Directly to content
  1. Publishing |
  2. Search |
  3. Browse |
  4. Recent items rss |
  5. Open Access |
  6. Jur. Issues |
  7. DeutschClear Cookie - decide language by browser settings

Hydrodynamical cosmological simulations in f(R) modified gravity

Arnold, Christian

[img]
Preview
PDF, English - main document
Download (9MB) | Terms of use

Citation of documents: Please do not cite the URL that is displayed in your browser location input, instead use the DOI, URN or the persistent URL below, as we can guarantee their long-time accessibility.

Abstract

I study the effects of Hu & Sawicki f(R)-gravity on astrophysical processes and cosmological observables. Employing hydrodynamical cosmological simulations carried out with the MG-GADGET and AREPO codes in modified gravity the influences on the Lyman-alpha forest, Milky-Way sized halos, clustering and lensing on large scales as well as on the Sunyaev-Zeldovich effect are investigated. Comparing MG-GADGET to other codes I find that different f(R)-gravity simulation methods agree on a percent-level accuracy for matter power spectra and halo profiles. The f(R) effects are in general smaller at higher redshift, resulting in very small differences between f(R)-gravity and general relativity (GR) for the Lyman-alpha forest. Structural properties of Milky-Way sized halos are however altered by up to 40%. Requiring that the Solar system is screened within the Milky-Way leads to f_R0 = -10^-7 as a constraint on the background parameter. The fifth force is well described by a theoretical approximation in ideal NFW-halos while this estimate is much less accurate for realistic halos. Two point correlation functions and angular power spectra are increased in f(R)-gravity compared to GR. Dark matter halos are in contrast less strongly correlated, leading to a lower halo clustering bias in f(R)-gravity. The angular power in both thermal and kinetic Sunyaev-Zeldovich maps is by a few percent higher in modified gravity compared to a LCDM model.

Item Type: Dissertation
Supervisor: Springel, Prof. Dr. Volker
Place of Publication: Heidelberg
Date of thesis defense: 24 May 2017
Date Deposited: 06 Jun 2017 09:56
Date: 2017
Faculties / Institutes: The Faculty of Physics and Astronomy > Institute for Theoretical Physics
Service facilities > Heidelberg Institute for Theoretical Studies (HITS)
Subjects: 530 Physics
Controlled Keywords: Kosmogonie, Dunkle Energie, Computersimulation
Uncontrolled Keywords: Modified gravity
About | FAQ | Contact | Imprint |
OA-LogoDINI certificate 2013Logo der Open-Archives-Initiative