Directly to content
  1. Publishing |
  2. Search |
  3. Browse |
  4. Recent items rss |
  5. Open Access |
  6. Jur. Issues |
  7. DeutschClear Cookie - decide language by browser settings

Global Fits for New Physics at the LHC and Beyond

Butter, Anja

[img]
Preview
PDF, English
Download (8MB) | Terms of use

Citation of documents: Please do not cite the URL that is displayed in your browser location input, instead use the DOI, URN or the persistent URL below, as we can guarantee their long-time accessibility.

Abstract

We study physics beyond the Standard Model with state–of–the–art global fits of both UV-complete models like supersymmetry and the more general effective field theories (EFTs). The gamma-ray excess from the galactic center measured by Fermi–LAT can be interpreted as a dark matter signature in the minimal supersymmetric model. Using the SFitter framework we identify different annihilation channels with a dark matter mass up to 300 GeV yielding the measured spectrum. Strong constraints from direct detection experiments and relic density rule out large regions of the parameter space, favoring a pseudoscalar mediator. In the next– to–minimal supersymmetric model the additional singlet allows efficient annihilation of dark matter particles below 60 GeV via a light pseudoscalar. We connect the resulting solutions to the GC excess with a large invisible Higgs branching ratio in reach of the LHC. Finally we use the EFT framework to constrain higher-dimensional operators from the Higgs and the electroweak gauge sector. Our bounds on triple gauge–boson couplings from LHC di– boson channels are several times stronger than those obtained from LEP data. The combination of Higgs measurements and triple gauge vertices leads to a significant improvement in the entire set of operators.

Item Type: Dissertation
Supervisor: Plehn, Prof. Dr. Tilman
Date of thesis defense: 2 November 2017
Date Deposited: 17 Nov 2017 07:55
Date: 2017
Faculties / Institutes: The Faculty of Physics and Astronomy > Institute for Theoretical Physics
Subjects: 530 Physics
Controlled Keywords: LHC, Dark Matter, Effective Field Theory
About | FAQ | Contact | Imprint |
OA-LogoDINI certificate 2013Logo der Open-Archives-Initiative