Direkt zum Inhalt
  1. Publizieren |
  2. Suche |
  3. Browsen |
  4. Neuzugänge rss |
  5. Open Access |
  6. Rechtsfragen |
  7. EnglishCookie löschen - von nun an wird die Spracheinstellung Ihres Browsers verwendet.

Modeling and Verification for a Scalable Neuromorphic Substrate

Müller, Paul

[thumbnail of phd_pmueller.pdf]
Vorschau
PDF, Englisch
Download (14MB) | Nutzungsbedingungen

Zitieren von Dokumenten: Bitte verwenden Sie für Zitate nicht die URL in der Adresszeile Ihres Webbrowsers, sondern entweder die angegebene DOI, URN oder die persistente URL, deren langfristige Verfügbarkeit wir garantieren. [mehr ...]

Abstract

Mixed-signal accelerated neuromorphic hardware is a class of devices that implements physical models of neural networks in dedicated analog and digital circuits. These devices offer the advantages of high acceleration and energy efficiency for the emulation of spiking neural networks but pose constraints in form of device variability and of limited connectivity and bandwidth. We address these constraints using two complementary approaches: At the network level, the influence of multiple distortion mechanisms on two benchmark models is analyzed and compensation methods are developed that counteract the resulting effects. The compensation methods are validated using a simulation of the BrainScaleS neuromorphic hardware system. At the single neuron level, calibration procedures are presented that counteract device variability for a new analog implementation of an adaptive exponential integrate-and-fire neuron model in a 65 nm process. The functionality of the neuron circuit together with these calibration methods is verified in detailed transistor-level simulations before production. The versatility of the circuit design that includes novel multi-compartment and plateau-potential features is demonstrated in use cases inspired by biology and machine learning.

Dokumententyp: Dissertation
Erstgutachter: Meier, Prof. Dr. Karlheinz
Tag der Prüfung: 2 November 2017
Erstellungsdatum: 23 Nov. 2017 10:14
Erscheinungsjahr: 2017
Institute/Einrichtungen: Fakultät für Physik und Astronomie > Dekanat der Fakultät für Physik und Astronomie
Fakultät für Physik und Astronomie > Kirchhoff-Institut für Physik
DDC-Sachgruppe: 004 Informatik
530 Physik
Normierte Schlagwörter: neuromorphic
Leitlinien | Häufige Fragen | Kontakt | Impressum |
OA-LogoDINI-Zertifikat 2013Logo der Open-Archives-Initiative