Directly to content
  1. Publishing |
  2. Search |
  3. Browse |
  4. Recent items rss |
  5. Open Access |
  6. Jur. Issues |
  7. DeutschClear Cookie - decide language by browser settings

Observations of atmospheric variability and soil exhalation rate of 222Radon at a Russian forest site: Technical approach and deployment for boundary layer studies

Levin, Ingeborg and Born, Matthias and Cuntz, Matthias and Langendörfer, Uwe and Mantsch, Stefan and Naegler, Tobias and Schmidt, Martina and Varlagin, Andrej and Verclas, Stefan and Wagenbach, Dietmar

In: Tellus 54B, (2002), pp. 462-475.

[img]
Preview
PDF, English
Download (338Kb) | Terms of use

Citation of documents: Please do not cite the URL that is displayed in your browser location input, instead use the persistent URL or the URN below, as we can guarantee their long-time accessibility.

Abstract

A monitor for continuous observations of the atmospheric 222Rn daughter activity has been improved and successfully implemented in a field study at a Russian site (Fyodorovskoye Forest Reserve). The alpha-activity of the short-lived 222Rn and 220Rn (212Pb) decay products, which are attached to aerosols, is accumulated on a quartz aerosol filter and assayed on-line by alpha-spectroscopy. The alpha-activity from the 212Pb daughters is determined by spectroscopy and corrected for. This monitor is suitable to measure 222Rn activities at hourly resolution down to 0.5 Bq m-3 with an uncertainty well below ±20%. The prototype of this monitor is run in Heidelberg on the roof of the Institute’s building about 20 m above ground. For this site, the atmospheric radioactive disequilibrium was determined between the 222Rn daughter 214Po and 222Rn, which has to be known to derive the atmospheric 222Rn activity with the static filter method. We derived a mean disequilibrium 214Po/222Rn = 0.704±0.081 for various meteorological conditions through parallel 222Rn gas measurements with a slow pulse ionisation chamber. At the Russian field site, continuous activity observations were performed from July 1998 until July 2000 with half a year interruption in summer/fall 1999. During intensive campaigns, a second monitor was installed at Fyodorovskoye at 15.6 m (July/August 1998), and at 1.8 m (July/August 1999 and October 1999) above ground. Pronounced diurnal cycles of the 222Rn daughter activity were observed at all sites, particularly during summer when the vertical mixing conditions in the atmospheric surface layer vary strongly between day and night. The lower envelope of the continuous measurements at Fyodorovskoye and at Heidelberg changes on synoptic time scales by a factor of 4 to 10 due to long-range transport changes between continental to more maritime situations. Generally, the 222Rn activity at 26.3 m height at Fyodorovskoye is lower by a factor of 2 to 3 compared to Heidelberg at 20 m above ground. This unexpected result is due to considerably lower 222Rn exhalation rates from the soils measured in the footprint of the Fyodorovskoye Forest tower compared to Heidelberg. With the inverted chamber technique 222Rn exhalation rates in the range of 3.3 to 7.9 Bq m-2 h-1 were determined at Fyodorovskoye for summer 1998 and autumn 1999 (wet conditions with water table depths between 5 and 70 cm). Only during the very dry summer in 1999 the mean 222Rn exhalation rate increased by about a factor of five. All measured exhalation rates at the Fyodorovskoye Forest are considerably smaller by a factor of 2-10 compared to what we observe in the vicinity of Heidelberg (ca. 50 to 60 Bq m-2 h-1) and generally in Western Europe.

Item Type: Article
Journal or Publication Title: Tellus 54B
Date Deposited: 08. Aug 2006 14:23
Date: 2002
Page Range: pp. 462-475
Faculties / Institutes: The Faculty of Physics and Astronomy > Institute of Environmental Physics
Subjects: 530 Physics
Controlled Keywords: Radon-222, Radon
Uncontrolled Keywords: Atmosphäre , Bodenradion , atmosphere , soil exhalation
About | FAQ | Contact | Imprint |
OA-LogoLogo der Open-Archives-Initiative