Direkt zum Inhalt
  1. Publizieren |
  2. Suche |
  3. Browsen |
  4. Neuzugänge rss |
  5. Open Access |
  6. Rechtsfragen |
  7. EnglishCookie löschen - von nun an wird die Spracheinstellung Ihres Browsers verwendet.

Topological data analysis and geometry in quantum field dynamics

Spitz, Daniel

[thumbnail of Dissertation_Daniel_Spitz.pdf]
Vorschau
PDF, Englisch - Hauptdokument
Download (20MB) | Lizenz: Creative Commons LizenzvertragTopological data analysis and geometry in quantum field dynamics von Spitz, Daniel steht unter einer Creative Commons Namensnennung 4.0

Zitieren von Dokumenten: Bitte verwenden Sie für Zitate nicht die URL in der Adresszeile Ihres Webbrowsers, sondern entweder die angegebene DOI, URN oder die persistente URL, deren langfristige Verfügbarkeit wir garantieren. [mehr ...]

Abstract

Many non-perturbative phenomena in quantum field theories are driven or accompanied by non-local excitations, whose dynamical effects can be intricate but difficult to study. Amongst others, this includes diverse phases of matter, anomalous chiral behavior, and non-equilibrium phenomena such as non-thermal fixed points and thermalization. Topological data analysis can provide non-local order parameters sensitive to numerous such collective effects, giving access to the topology of a hierarchy of complexes constructed from given data. This dissertation contributes to the study of topological data analysis and geometry in quantum field dynamics. A first part is devoted to far-from-equilibrium time evolutions and the thermalization of quantum many-body systems. We discuss the observation of dynamical condensation and thermalization of an easy-plane ferromagnet in a spinor Bose gas, which goes along with the build-up of long-range order and superfluidity. In real-time simulations of an over-occupied gluonic plasma we show that observables based on persistent homology provide versatile probes for universal dynamics off equilibrium. Related mathematical effects such as a packing relation between the occurring persistent homology scaling exponents are proven in a probabilistic setting. In a second part, non-Abelian features of gauge theories are studied via topological data analysis and geometry. The structure of confining and deconfining phases in non-Abelian lattice gauge theory is investigated using persistent homology, which allows for a comprehensive picture of confinement. More fundamentally, four-dimensional space-time geometries are considered within real projective geometry, to which canonical quantum field theory constructions can be extended. This leads to a derivation of much of the particle content of the Standard Model. The works discussed in this dissertation provide a step towards a geometric understanding of non-perturbative phenomena in quantum field theories, and showcase the promising versatility of topological data analysis for statistical and quantum physics studies.

Dokumententyp: Dissertation
Erstgutachter: Berges, Prof. Dr. Jürgen
Ort der Veröffentlichung: Heidelberg
Tag der Prüfung: 18 Juli 2023
Erstellungsdatum: 26 Jul. 2023 08:16
Erscheinungsjahr: 2023
Institute/Einrichtungen: Fakultät für Physik und Astronomie > Institut für Theoretische Physik
DDC-Sachgruppe: 500 Naturwissenschaften und Mathematik
530 Physik
Normierte Schlagwörter: Physik, Angewandte Mathematik
Freie Schlagwörter: Quantenfeldtheorie, topologische Datenanalyse, Geometrie
Leitlinien | Häufige Fragen | Kontakt | Impressum |
OA-LogoDINI-Zertifikat 2013Logo der Open-Archives-Initiative