Directly to content
  1. Publishing |
  2. Search |
  3. Browse |
  4. Recent items rss |
  5. Open Access |
  6. Jur. Issues |
  7. DeutschClear Cookie - decide language by browser settings

On the Implications of a Future Neutrinoless Double Beta Decay Discovery

Scholer, Oliver

[thumbnail of Dissertation_Oliver_Scholer.pdf]
Preview
PDF, English - main document
Download (13MB) | Lizenz: Creative Commons LizenzvertragOn the Implications of a Future Neutrinoless Double Beta Decay Discovery by Scholer, Oliver underlies the terms of Creative Commons Attribution - ShareAlike 4.0

Citation of documents: Please do not cite the URL that is displayed in your browser location input, instead use the DOI, URN or the persistent URL below, as we can guarantee their long-time accessibility.

Abstract

Neutrinoless double beta decay (0νββ) is the most promising experimental probe of lepton number violating (LNV) physics beyond the Standard Model. Its discovery may provide profound insights into the mechanism of neutrino mass generation as well as the observed baryon asymmetry of the universe. While the most simple interpretation of a 0νββ signal is in terms of a LNV Majorana neutrino mass term, other LNV mechanisms may provide the leading contribution to the 0νββ transition amplitude. Effective field theories (EFTs) are an efficient tool to describe and study the various LNV mechanisms of 0νββ in a model-independent way. In this work, we study the implications of a future 0νββ discovery by showcasing how different LNV mechanisms of 0νββ can be disentangled via measurements of the half-life and electron kinematics in various isotopes. By providing a proof-of-concept model that generates a non- trivial 0νββ half-life in a model with a lepton number conserving vacuum ground-state Lagrangian, we challenge the long-standing black-box theorem, which relates a 0νββ observation to the Majorana nature of neutrinos. This is achieved via the capture of a lepton number carrying scalar field from a dark background. Finally, we automated the applied EFT framework in the Python tool νDoBe and showcase example use-cases.

Document type: Dissertation
Supervisor: Lindner, Prof. Dr. Dr. h.c. Manfred
Place of Publication: Heidelberg
Date of thesis defense: 16 October 2024
Date Deposited: 30 Oct 2024 13:11
Date: 2024
Faculties / Institutes: The Faculty of Physics and Astronomy > Dekanat der Fakultät für Physik und Astronomie
Service facilities > Max-Planck-Institute allgemein > MPI for Nuclear Physics
DDC-classification: 530 Physics
Controlled Keywords: Neutrinos, Neutrinoless Double Beta Decay, Lepton Number Violation, Effective Field Theories, Chiral EFT, Python Tools
About | FAQ | Contact | Imprint |
OA-LogoDINI certificate 2013Logo der Open-Archives-Initiative