Direkt zum Inhalt
  1. Publizieren |
  2. Suche |
  3. Browsen |
  4. Neuzugänge rss |
  5. Open Access |
  6. Rechtsfragen |
  7. EnglishCookie löschen - von nun an wird die Spracheinstellung Ihres Browsers verwendet.

Forces and Flow of Contractile Networks

Brand, Christoph Alexander

Deutsche Übersetzung des Titels: Kräfte und Fluss von kontraktilen Netzwerken

[thumbnail of thesis20151207.pdf]
Vorschau
PDF, Englisch
Download (24MB) | Nutzungsbedingungen

Zitieren von Dokumenten: Bitte verwenden Sie für Zitate nicht die URL in der Adresszeile Ihres Webbrowsers, sondern entweder die angegebene DOI, URN oder die persistente URL, deren langfristige Verfügbarkeit wir garantieren. [mehr ...]

Abstract

Biological cells use contractile networks of cross-linked semiflexible biopolymers, the so-called actin cytoskeleton, to control their shapes and to probe the mechanical properties of their environment. These processes are essential for cell survival and function. In this thesis we present a general framework to model two-dimensional contractile networks embedded in either two- or three-dimensional space. A surface representation with triangles and edges allows us to explicitly address the heterogeneity of biopolymer networks. In adherent cells, thick polymer bundles called stress fibers strongly influence cellular mechanics. We establish methods to assess their contribution to traction force generation, intracellular force balance, and intracellular flow from experimental data. Further, we develop a theory for the excitable nature of the cell cortex, which is a thin polymer layer lining the inner side of the cell membrane, and show how it is related to global cell shape changes.

Übersetzung des Abstracts (Deutsch)

Biologische Zellen benutzen kontraktile Netzwerke von miteinander verknüpften, semiflexiblen Biopolymeren, um ihre Form zu steuern und die mechanischen Eigenschaften ihrer Umgebung zu erkunden. Diese Prozesse sind entscheidend für das Überleben und die Funktionsfähigkeit der Zellen. Die vorliegende Arbeit zeigt einen allgemeinen Rahmen auf, um zweidimensionale kontraktile Netzwerke zu modellieren, die in den zwei- oder dreidimensionalen Raum eingebettet sind. Eine Beschreibung von Oberflächen mit Dreiecken und Kanten ermöglicht es uns, explizit auf die Heterogenität von Biopolymernetzwerken einzugehen. In adhärierenden Zellen beeinflussen dicke Polymerbündel, die Stressfasern genannt werden, die Zellmechanik. Wir führen Methoden ein, um deren Einfluss auf die Erzeugung von Traktionskräften, das intrazelluläre Kräftegleichgewicht und den intrazellulären Fluss auf der Grundlage experimenteller Daten festzustellen. Darüber hinaus entwickeln wir eine Theorie für die Anregbarkeit des Zellkortexes, einer dünnen Polymerschicht auf der Innenseite der Zellmembran, und zeigen wie diese mit globalen Veränderungen der Zellform zusammenhängt.

Dokumententyp: Dissertation
Erstgutachter: Schwarz, Prof. Dr. Ulrich Sebastian
Tag der Prüfung: 3 Februar 2016
Erstellungsdatum: 17 Feb. 2016 10:23
Erscheinungsjahr: 2017
Institute/Einrichtungen: Fakultät für Physik und Astronomie > Institut für Theoretische Physik
DDC-Sachgruppe: 530 Physik
Leitlinien | Häufige Fragen | Kontakt | Impressum |
OA-LogoDINI-Zertifikat 2013Logo der Open-Archives-Initiative